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ABSTRACT
We study the existence, uniqueness, regularity and dependence upon data
of solutions of the abstract functional differential equation

(1) :—:+Au 3 G(u) (0 <t<T), u(0) = x ,

where T > O is arbitrary, A 1is a given m-accretive operator in a real

Banach space X, and G : C([0,T];D(A)) ~ Ll(O,T;X) is a given mapping.

This study provides simple proofs of generalizations of results by several

authors concerning the nonlinear Volterra equation

(2) u(t) + b * Au(t) » F(t) (0<t<T) .

for the case in which X is a real Hilbert space. 1In (2) the kernel b is
t

real, absolutely continuous on [0,T], b * g(t) = f b(t - s)g(s)ds, and

0
F € Wl'l(O,T;X).

AMS (MOS) Subject Classifications: 47H15, 34K05, 45N05, 34G05, 47H10, 47HOS,
47H99, 47G05

Key Words: nonlinear abstract functional differential equations, nonlinear
abstract Volterra equations, evolution equations, m-accretive

operators, regularity, continuous dependence on data
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| EXPLANATION
An\;m-accretive operator“fis an abstraction which covers many

nonlinear differential operators arising in applications. This paper

shows how certain problems involving evolution equations with m-accretive

operators and delay effects in the time dependence can be discussed within

the existing abstract theory. Indeed, a (theoretically) simple iterative

procedure is shown to converge to the desired solution.
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AN ABSTRACT FUNCTIONAL DIFFERENTIAL EQUATION AND A RELATED
NONLINEAR VOLTERRA EQUATION

M. G. Crandall1 and J. A. Nohel2

1. Introduction and Preliminaries. We study the initial value problem

g—:—+)\uac(u) (0<t<m ,
(1.1)
u(0) = x
where A is a given m-accretive (possibly multi-valued) operator in a real Banach space

X with norm ||+||, and G is a given mapping

(1.2) G : cl{o,T1;5@) » L', mix) .

(see [1) and [8] concerning the notion of an m-accretive operator and other notation not
defined here.) Points of interest will be the existence, uniqueness, regularity, and
dependence upon data of solutions of (1.1). The method employed is simple. If x € D(A)
and g € Ll(O,T;x), then the evolution problem

g-‘tinwag O<t<m ,
(1.3)

v(0) = x

has a unique "integral" solution (see [l], (5], or [8]) v € C((O,T]:ETK)). Let v H(g)

denote this solution. A solution of (1.1) is by definition a function u € C({0,T]:D(A))

such that u = H(G(u)). Under suitable assumptions, some iterate of K = H(G) is a
strict contraction and (1.1) has a un'que solution u. Further assumptions allow stronger
conclusions, e.g. the solution of (1.1) is Lipschitz continuous or a strong solution

(see below). The method adapts easily to generalizations (e.g., the operator A = A(t)
depends on time), and to the study of the dependence of u on A, G, and x. The

basic idea used here is already found in [5]) and exploited for G as in (1.2) in [9].

Sponsored by:
1) The United States Army under Contract No. DAAG29-75-C-~0024;
2) The United States Army under Grant No. DAAG29-77-G-0004 and the National Science
Foundation Grant No. MCS75-~21868.
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Much of the motivation for our study of (1.1) lies in the fact that we thereby
obtain very simple proofs of generalization of results due to several other authors.

MacCamy (15) considers the problem

g—:--pmAu(t) +a * au(t) = £(t) ©<t<m ,
(1.4)
u(0) = x
where m > 0 is a constant, A is a maximal monotone operator in a real Hilbert space
t
H, and a is a real kernel. We use the notation a * g(t) = f a(t - s)g(s)ds.
0

Under various additional restrictions, MacCamy transforms the problem (1.4) to one of
the form (1.1) by the method of the proof of Proposition 1 below. He then treats the
resulting special case of (1.1) via a Galerkin argument (which necessitates further
restrictions). Our results concerning (1.1) are directly applicable to problems of
the sort discussed in [15). Moreover, we also obtain generalizations of results of Barbu [2],
[3), Londen [13], Gripenberg [11} and Londen and Staffans [14] concerning equations of
the form
(1.5) u(t) + b * Au(t) » F(t) O<t<m .
The Volterra equation (1.5) was treated in a Hilbert space setting by these authors,
whereas we obtain results in general Banach spaces by very different and simpler proofs. t
Section 2 contains the basic results for (1.1). Applied to the study of (1.5) ¢
these results show, among other things, that (1.5) has a unique generalized solution
whenever b is'absolutely continuous, b(0) > 0, b' is of bounded variation on [O,T], :
F € wl'l(O,T;x) (see below) and F(0) € D(A). This fact is established in Section 3,
but we present below the basic connection between (1.1) and (1.5) in thé case of strong
solutions (which will be defined shortly). Section 4 sketches the relationship
between this paper and the existing literature and outlines some generalizations.
First recall that if I is an interval, then u € WI'I(I;X) means that there is

a function v : I » X which is stfongly integrable on I (i.e. v € Ll(I;x)) such that

t
u(t) - u(s) = [ v(ndr (t,s e I) ;




T

T

then u'(t) = v(t) a.e. on I. It is also known (e.g. [6, p. 148] or [1, p. 16]) that
ue Hl'l(I;X) is equivalent to u : I + X being absolutely continuous (u € AC(I;X))
and differentiable a.e. on I. If ue€ AC(I;X) and X is reflexive, then u is
autouticaliy differentiable a.e. on I,

Definition. A strong solution of (1.1) on [0,T] is a function

ue wlo,mx n C(l0,T1;D(A)) satisfying u(0) = x and u'(t) + Au(t) 2 G(u)(t)
a.e. on [0,T].

Definition. Let be L'(0,T;R), Fe t}(0,m:X). A strong solution u of (1.5) on [0,T]

is a function u € LI(O,T;X) for which there exists w € Ll(O,T;x) with w(t) € Au(t)

and u(t) + b * w(t) = F(t) a.e. on [0,T].
Proposition 1. Let b € AC([0,T];R), b' € BV([0,T]; R) (i.e. b':[0,T] » R is
of essentially bounded variation), F € WI’I(O,T;X) and b(0) = 1. Let u be a strong

solution of (1.5) on [0,T]. Then u is a strong solution of (1.1) where

(( (i) Gu)t) = £(t) +r * £(t) - r(O)u(t) + r(t)x - u * r'(t) ,

(ii) f£(t) = F'(¢t) ,

(1.6) ﬂ (iii) x = F(0) ,

(iv) a=b' ,

L (v) re Ll(O,T;R) is defined by r + a * r = -a ,

and we have used the notation

t
(1.7 u*r'(t) =/ ult-sdr(s) .
0

Conversely, let r € BV([O,T];R), f € Ll(O,T;x), x € D(A), and G be given by

(1.6(i)). If wu is a strong solution of (1.1), then u is a strong solution of (1.5),

where
t
(1) F(t) =x+ [ f(s)as ,
0
(1.8) (ii) a+a*r=-r,
t

(iii) b(t) =1+ [ a(e)ds .
0




Proof: Let u be a strong solution of (1.5) on [0,T] and u +b *w =F where

wE Ll(O,T;X), and w(t) € Au(t) a.e. on [0,T)]. Since b€ AC([0,T):R) and

Fe wl‘l(o,'r;X), u=F-b*we wl'l(o,'r;x) and u' + b(0)w + b' * w=F'. Since b(0) =1,
(1.9) w+b' *w=F"'-u'.

Simple facts about Volterra equations imply that if r,a € Ll(O,T;In are related via
(1.6(iv)), then for v,we€ Ll(O,T;x) we have

(1.10) wW+tartw=yv<=> v+rrtvs=w.

The reader can easily check this (or see [16, Chp. 4]). Hence (1.9) and r + b' * r = -b"'
imply

(1.11) w=F'-u' +r* (F' - u}) . -

Finally, a =Db' € BV([0,T);R) is equivalent to r € BV([0,T];R) (Bellman and Cooke [4;
Theorem 7.4]), so

(1.12) r * u'(t) = r(O)u(t) -~ r(t)u(0) + u * r'(t) .

Since u(0) = F(0) = x and w(t) € Au(t) a.e., (1.11) and (1.12) show that u is a
strong solution of (1.1) with the identifications (1.6).

The converse is proved by reversing the steps. If wu e Wl'l(O,T;X) is a strong
solution of (1.1) on [0,T), then G(u)(t) - u'(t) = w(t) € Au(t) a.e. If G is given
by (1.6(i)) and (1.12) is used, one finds that

(f ~-u') +r* (f-u')=w,
and by using (1.10) that w+ a * w = £ - u'. 1Integration of this equation yields (1.5)
with the identifications (1.8).
Remark. When considering (1.5) one may reduce to the case b(0) = 1, provided that
b(0) > 0, since A may be replaced by b(0)A. Formally, b * Au = ; - ;u, where

1

b = b(0) b, A = b(0)A. ~
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2. Principal Results. It is assumed throughout this section that A is m-accretive.

The following simple result establishes the existence and uniqueness of solutions of (1.1).

Theorem 1. Let x € D(A), Y € Ll(O,Tle and let G : C([O,T];ETK)) S5 LI(O,T;X) satisfy

t
llew@ -ew |l <[ v Jle-v] ds
(2.1) L (0,t;X) (o] L (0,s;:X)

for 0 <t<T and u,v e C([0,T]iD(A)) .

Then (1.1) has a unique solution u € C([0,T]):;D(a)).

We remark that assumption (2.1) implies that the value of CG(u) at te [0,T] depends
only on the restriction of u to [0,t].

Under further assumptions one can obtain greater regularity of solutions of (1.1)
than mere continuity. For example:

Theorem 2. In addition to the hypotheses of Theorem 1 assume that there is a function

k : [0,®) » [0,») such that

var (G(u) : [0,t]) < k(R) (1 + var(u:[0,t])
(2.2)
and Jlcy(on]] <km®, o0<t<T,
whenever u € C([0,T);D(A)) is of bounded variation and ||ul| < R. (The varia-

L7(0,TiX)

tion of a function v over an interval I is denoted by ‘var(v:l).) If x € D(A),

then the solution u of (1.1) is Lipschitz continuous on [0,T). If X is also reflexive,

then the solution u of (1.1) is a strong solution on [(0,T].

Finally, we note that the solution u of (1.1) depends continuously on the "data"
A, G, x in the following sense:

Theorem 3. Let the assumptions of Theorem 1 be satisfied. Let an m-accretive operator

An in X, a mapping Gn : C([0,T);:X) » Ll(O,T;X) and X, € D(An) be given for

n=1,2,... . Assume that:

{The inequality (2.1) holds with G replaced by Gn for all
(2.3)

u,ve C([0,T);X), with the same y for each n =1,2,... ;
(2.4) lim Gn(u) = G(u) in Ll(O,T;x) for ue C([0,T):D(A)) ;

no e
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(2.5) He @r B Pew @iy for A>0, 2¢ %)
n —
e
and
(2.6) lim x =xe D(A) .
e

Let une C((O,T];D(An)) be solutions of (1.1) on ([0,T) with A replaced by An' G

replaced by Gn' x replaced xn and let ue C([0,T);D(A)) be the solution of (1.1)

on ([0,T]. Then 1lim w =u in c((o0,T});X).

noe

Proof of Theorem 1: Denote the integral solution of v' + Av 3 g, v(0) = x, g € Ll(O.T:X)
by v = H(g). We seek a fixed point of the map K : C([0,T];D(A)) + C([0,T];D(A)) defined

by K(u) = H(G(u)). By properties of integral solutions
t
Ik (t) - k) ) || < [ |lemits) - Gvis) [las
o

for 0 <t <T, uve C(O,T];D(A)). By (2.1) we thus have

t

(2.7) lIx( - xw |l _ <f v llu-vll _ ds O<t<m .

L (0,t;X) o — L (0,s:X)
Iterating (2.7) one shows by induction that
5 : t
(2.8) KW -dm| < vy -l ds (0<t<m
L (0,t;X) (o] L (0,s;:X)

where

s
. = H j = 2,3,...7 = .
(2.9 v5(8) = v(s) (]) Yy (doi =2 R
T 1 A
Now 1im f yj(s)ds =0, since y € L (0,T;R), and so k? is a strict contraction on
j*= 0

Cc({0,T};D(A)) for sufficiently large 3j. This establishes the result.
Remark: Theorem 1 is a mild generalization (with the same proof) of ([9; Lemma 2.1}.

Proof of Theorem 2: Define the function Uy ¢ [0,T] + X by uyft) =x, 0 <t <T. The

proof of Theorem 1 shows that the iterates u = K(un) = H(G(un)), n=20,1,..., converge

n+l

uniformly to the solution u of (1.1) on [0,T]. Hence the iterates “n are uniformly

A KR e retiiin e i
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bounded. If g € BV([0,T};X) in the evolution equation (1.3), then the solution

v = H(g) satisfies
E
var (v:[0,t]) < ||g(0+) - y ||t + [ wvar(g:[0,T])at
(2.10) 0
for y € Av(0) = Ax and for 0 <t <T.
In fact (2.10) follows from the stronger inequality
llviey = vimy|| < |&€ =nft Jlgco+) - y|| + var(g:[0,t]))

(2.11)
for y € Av(0), 0O<Em<t.

See, e.g. [1, p. 132) or [S5, Prop. 1.6]. Thus by (2.2), (2.10) and the uniform boundedness

of {un}, there exists a constant ¢ such that
t
(2.12) var(u_ . :[0,t])) < c(l + [ var(u :[0,7])dT) 0O<t<T .
n+l = 0 n =1
But then var(u ., :[0,t]) < c exp(ct). Thus {var(un:IO,T]i) and var{G(un):IO,T]}
are both bounded. By (2.11), {un] is uniformly Lipschitz continuous. Hence
u = lim un is Lipschitz continuous. If X 1is reflexive, u € wl'l({o,T};x) follows
n»e

from the absolute continuity, and u is a strong solution of (1.1) on [O,T].

Proof of Theorem 3: 1In the proof of Theorem 1 the solution of (1.1) was represented as

the unique fixed point of a mapping K = HG. H depends on the "data" A and x which

we now exhibit explicitly: H(A,x,g) is the iniegral solution of (1.3) for x € BTK)

and g € LI(O,T;X). We indicate the dependence of K on A, x, G of (1.1) by
K(A,>.G)(u) = H(A,x,G(u)) .

In the proof of Theorem 1, Kj was a strict contraction for some Jj. Both J and the

contraction constant depend only on the function Yy which we assume in

(2.3) to be uniform in n. Thus, by the argument of Theorem 1, there is a j > 0 and

"0 < 2 <1 such that if Kn(u) = K(An,xn,Gn)(u), then

IQw - Jmll <l -l

(2.13) L (O,T;X) L (OITFX)

for u,v e C([0,T);:X), n=1,2,ce0 o«

If ue C([O,T];ETis. u, € C([O,T];D(An)) satisfy the equations K(u) = K(A,x,G)(u) = u
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and Kn(un) = K(An.xn.Gn) (un) o then using (2.13)

o = llxd — D]
o - wlly = K@) - Kwll,

A

I - Swll, + 1w - Swl|,

|A

3 3
L ||un -ufl, + ||Kn(u) ol S GV | J
where || ". denotes the norm in LG(O,T;x). Thus

llo - o ll, < 72 Q@ - Pl .

and the assertion follows if ”Ki(u) - K (u) ||° + 0 as n + ®. For this it suffices
to know that "Kn(u) - k|, = ”H(An,xn,Gn) (W) - HA,x,G) (|| + 0 as n > .

But the latter follows from [5, Prop. 1.23] in view of (2.4.), (2.5), (2.6). The proof
is complete.

Remark 2.14: The dependence of the fixed point u of the mapping K(A,x,G) on x and
G can be exhibited more precisely. Let u = K(A,x,G)(u), u = K(a,X,6)(4) where G, &

satisfy (2.1). Then by properties of integral solutions and (2.1)

~ ~ t A A
lutr )|l < flx - xll + [ |lowxs) - Gs)|lds
0

- t - & ~ A A
S llx-xll + [ llewns) - cxs)|las + [ |lctans) - &) ||as
0 0

t
<ew) + [ vis) flu -l ds ,
0 L (0,s;X)
where
~ t -~ -~ -~
(2.15) et) = |lx - xll + [ llc@rs) - G@rslas .
0
Thus by Gronwall's inequality
" A t | -
(2.16) Hu(t) - u(t) " < Ilu - u“ g < e(t) +f exp(] y(t)dt)e(s)ds .
L (O,t;x) 0 s




3. Applications to the Abstract Volterra Equation. Consider the problem

(3.1) u+b*Au 2 F ,
where b, F are as in Proposition 1 and A is m-accretive on X. Let A > 0 and
AA = X-I(I - (I + AA)-I) be the Yosida approximation of A. Ay 1 XX is Lipschitz

continuous, so a simple contraction argument shows that the approximating problem

* =
(3'1)A u, +Db AA“A )i

has a unique strong solution u, on [0,T) if be Ll(O,T:IH and F € Ll(O,T;X)-
Our main result for (3.1) is:

Theorem 4. Let b, F satisfy the assumptions of Proposition 1 and F(0) € D(A). Let

u, be the solution of (3.1), on [0,T]. Then limu, =u in C([0,T];X) where u is
A+0

the solution of the delay equation (1.1) on [0,T] of Theorem 1, with the identifications

(1.6). 1If, moreover, F' € BV([0O,T];X) and F(0) € D(A), then u is Lipschitz

continuous on [0,T]. If X is also reflexive, then wu € wl'l(o,T;X) and u is a

strong solution of (3.1).

Proof: With G given by (1.6) (i) we have

ety - cwviw)]] < (Jr()] + var(r:(o,e10) |ju - v|| _

L (0,t:X)
Hence
t
(3.2) lew -eml <) v fla-vll ds ,
L (0,t;X) 0 L (0,s;X)
with
(3.3) y(s) = |r(0)| + var(r : (0,s])

Since r € BV([0,T]);R) (beciuse a = b' has this property - see Proposition 1), (3.2),

(3.3) imply that G satisfies (2.1). By Proposition 1, u, is a strong solution of

A
duA
(3.4) 'az- + AA“X E G(ux), uA(O) = F(0)

One has 1lim (I + uAA)-lz = (I + uA)-lz for u > 0, z € X. Thus by Theorem 3 the u
A40

converge to u in C([0,T]);X) as desired. If F' e BV([0,T):X), (1.6)((i) - (iii))

A

imply that




var (G(u):[0,t)) < C(1 + var(u:[0,t))

(3.5)
llc) (o0 || < ¢, o<t<T,

where C is a constant depending on F(0), F‘(0+), var (F':[0,T]), r(0+), and

var(r:[(0,T)). Thus Theorem 2 implies that the solution u is Lipschitz continuous on

[0,T) if wu(0) = F(0) € D(A). If X is reflexive, u is a strong solution of (1.1)

| L) on [0,T], and by Proposition 1, u is a strong solution of (3.1) on [0,T]. This
completes the proof of Theorem 4.

| Observe that if (3.1) has a strong solution u on [0,T] under the assumptions of

Theorem 2, then it follows from Theorem 2 and Proposition 1 that 1lim u =u in

C([0,T]);X). However, whether or not (3.1) has a strong solution, 2;2 solutions uy of

‘B'I)A converge to a limit u as A ¥ 0. We adapt the point of view that this limit

is a generalized solution of (3.1):

Definition. Let the assumptions of Theorem 4 be satisfied. Then u = lim u, in
A0

C([0,T];X) is the generalized solution of (3.1) on [O,T].

T — T T ——— W

The generalized solution is a continuous function of the data b, A, F via Theorem 3.
The dependence of the solution on b, F can be estimated explicitly by the method of

| Remark 2.14. We present below the simpler estimate which results from varying only F.

Theorem 5. Let b satisfy the assumptions of Theorem 4 and F,ﬁ € wl'l(O,T;X), F(0),

ﬁ(o) € D(A). Let u,u € C([0,T);D(A)) be the generalized solutions on [0,T]

of the equations u + b * Au 3 F and U+b*AuosF respectively. Then

- v t
; lue) - aw)ll <er) + [ expf y(ndve(s)as (0 <t<m ,
0 s

shere
-~ t -~
elt) =c |IFo) - F)] +¢c, [ [IF'ts) - Frs)]as ,
0

ey =1+ llell cegmre el :
L (0,T;R) L (0,T;R)
y(s) = |r(0+)| + var(r:(0,s)) ,

| and r is determined by r + b' * r = -b',

G o

achd




TV %

o

R

Theorem 5 is proved by substituting into (2.15), (2.16) and estimating. Here G, G
are given by (1.6) (i) with £ =F', x = F(0) and f =F', x = F(0) respectively; y
is determined from (3.2), (3.3). Theorem 5 implies that the mapping: wl’l(o,T;x) 3 F »
the generalized solution u of (3.1) on [(0,T] is Lipschitz continuous on the set of
Fe wl'l(o,'r;x) satisfying F(0) € ﬁ). Thus if X is reflexive, the generalized

solution of (3.1) may be regarded as the unique limit of strong solutions.




-
5

T

4. Connections with Other Research and Generalizations. Concerning the existence and

uniqueness of solutions of the Volterra equation (3.1), Theorem 4 generalizes results
of Barbu [1]), Londgn [13] and MacCamy [15), all for the case X = H a real Hilbert space,
and Au = 3y (u), where 3¢ denotes the subdifferential of a function ¢ : H + (-»,=]
which is convex, l.s.c., and proper, and of Gripenberg [11; Theorem 1) for the case in which
X=H and A is a maximal monotone operator on H. Barbu [2] and Gripenberg [l1l; Theorem 2]
consider certain cases when the kernel b is operator-valued. Our assumptions concern-
ing the kernel b and the function F are closest to those of [11] and [13]. 1In
Barbu [1) the kernel b is assumed to be of positive type which, while less general
in some respects than the kernels of [11), [13]) and this paper does permit the possibility
that b(0+) = +», Londen and Staffans [14) also study (3.1) in the case X = H, Au = ¥ (u),
and they relax the assumption of [11) and [13) that b' € BV[0,T]; they require instead
that b' satisfies a frequency domain condition which holds automatically if b' € BV[O,T].
Theorem 5 has not been considered by any of these authors.
We should mention how the case in which A = 3¢ is treated in our context. From
[6, Thm. 3.6] it follows at once that in this case the solution u of (3.1) provided
by Theorem 4 satisfies u' € L2(0,T;H) if only F(0) € D(¢) and F' € LZ(O,T;H). 1f
F(0) € EF;) and F' € L2(O,T;H), then we have tu' € Lz(O,T:H). Moreover,
b' € BV([0,T);H) can be relaxed to (for example) the aséumption that b € AC([0,T];:H)
and b' € BV([O,?OJ;H) for some T0 > 0 by use of a continuation argument as in [13].
Theorem 4 can be used to strengthen a resul® of Clément and Nohel [7; Theorem 5]
concerning the positivity of solutions of the Volterra equation (3.1).
If A(t) is a m-accretive operator for almost all t € [0,T], BTXTE)) =D is

constant a.e. and g € LI(O,T;X), it is known [10] that the evolution problem

g% + A(E)V 5 g(t)
(4.1) = (O<t<T ,
u(0) = x

has a "solution" v € C([0,T];D) if x € D, provided only that either
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There exists a Banach space Y, h € Ll(O,T;Y), and a continuous

function L : [0,®) * [0,®) such that

(4.2)
A, torx - A (s)x|| , < lInee) - nes) || y BCIxI
for all A > 0, x€ X and almost all s,te [0,T] ,
or
There exist h,L as in (4.2), h € BV([0,T);Y) such that
(4.3) Hhx(t)x - Ax(s)x" 2.2 lInee) - nes) || LIl pa+ ||Ax(s)x” )

for A >0, x€ X and almost all s,te [O,T] ,

where A () = A1 - (1 + W) ™)), Moreover, if v = H(g) is the solution of (4.1,

t
(4.4) laie) ~u@xwll <[ |lats) - Gs)flas  (©0<t<m ,
3]

where g,& € LI(O,T:X). Since the property (4.4) of H was all we needed to find fixed
points of the map K = HG in Section 2, we can therefore solve the more general delay
equation

:—‘t‘+ A(t)u 2G(u), u(0) =x (0<t<T

where G(u) satisfies (2.1), (2.2), and also the Volterra equation
u+b*A(thu > F (oi.ti'r),

as in Sections 2 and 3. The notion of "solution" of (4.1) is more complex than if A
is independent of t, and the technical details concerning (4.1) are otherwise too
complicated to warrant more precision here. Thus we remark only that (4.2) or (4.3)
suf:-ice for a good existence theory and, given knowledge of (4.1), the proofs are the
same. See ([10] and [17] concerning (4.1). 1In particular, one easily generalizes the
results of Gripenberg (11, Theorem 2].

Another type of generalization arises if we relax the assumptions concerning G in

Theorem 1. For example let G be only "locally Lipschitz" in the following sense:

-13-




Let x € D(A), uo(t) =x,0<t<T, R>0,

M= {ue ceo,m:pm) : lu-wll . <R, and yetlo,mr".
L (0,T;X)
5] Assume that G : M > L! (0,T;X), satisfies
t
lew -ewll | </ v |l-v] ds for uveM
L (0,t;X) O L (0,s:X)

Then we can prove the following "local theorem" for the delay equation (1.1).

Theorem 6. Let (4.5) be satisfied. Then there isa T , 0 < T < T and a (unique)

0 0
u € M such that
(4.6) S & an a Glul, W0Y = x O<t<T .
dt £ ’ = =0
Proof: Let Yo € C([0,T);D(A)) be the solution of w' + Aw 3 G(uo), w(0) = x. Choose
To > 0 such that
llwg(®) - x]| < r/2 ©<t<T)
(a.7) To
[ v(s)as <172 .
0
let veé M and u be the solution of
du
— + = = .
at Au 3 G(v) u(0) x

Then using (4.5), (4.7) one has

fluey = xll < flay - wo I+ v o) - i

| A

t
| llew sy - Glug) (s) [l as + r/2
0

| A

t
R[ vis)as + B <3, (0<t<T)
5 2 = =tZ%

| A

The solution operator v * HG(v) = u thus maps the set M into

{ue C(lQ.Tl;m)) 2 ”u(t) - uo(t) " SR for 0<t< TO). Modify this mapping by setting
< HG (v) (t) if 0<t<rT
S
Ko (v) =
0 HG(v) (T,) if T SRAT.

M is now invariant under KT and
0

e A IR Y AR




-

e

t
“KT W - X (G20 | . <[ v flu-v|l ds (u,ve M .
0 (0] L (0,t;X) (o] L (0,s;X)

Therefore, KT has a unique fixed point u which is a solution of (4.6) on [O,Tol.
' (o]
This completes the proof of Theorem 6.
Finally, if assumption (2.1) is relaxed tb

(4.8) lew -cw| <hlu-v| '
L7 (0,T;X) L7(0,T;: X)

so that G(u) (t) can also depend on the values u(t) for Tt > t (which (2.1) does
not allow), then the technique of Theorem 1 shows that equation (1.1) with G replaced
by €G has a unique solution whenever |e|M < 1.
We also wish to point out that the method developed in Sections 2 and 3 can be
used to study the nonconvolution Volterra equation
t

(4.9) u(t) + [ b(t,s)au(s)ds » F(t) O<t<m ,
0

where A is m-accretive on X and F € Wl'l([O,T];x). Concerning b we assume that
it is defined on the region T = {(t,s) : 0 < s <t < T}, that b(t,s) is as smooth
as required for the calculations which follow, and that b(t,t) > 0 (0 < t < T).

Differentiating (4.9) one obtains

du

(4.10) at

t -
(&) + bt )Aue) + [ 22 (£;5)Au(s)ds 3 F' (8); u(0) = F(0)
0

t - -
Putting ¢(t) = b(t,t) >0, T =0(t) = [ ¢(s)ds (0 <t <T), y(1) = ¢ (o 1(t)) ]‘F'(O 1('r))
0

(0 <t <®(T)), and defining v(1) = u(O-l(T)), c(t,0) = b(o-l(T),O-l(o)), an elementary

calculation shows that (4.10) is transformed to the equivalent initial value problem

dc
T == (7,0)
dv T
,d.—‘l'" Av(T) + f

Av(0)d » ¥ (1) ©<t<om,
(4.11) R A

v(0) = x = F(0)

a_:: (t,0)

Let k(t,0) = + and define the associated resolvent kernel «xr(t,0) by the

“clo,0)
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equation ([17; Ch. IV]):

T
(4.12) r(r,0) + [ k(t,£)r(§,0)d = -k(7,0) (0<o<tT<é(m) .
(4]
] A calculation analogous to that of Proposition 1 shows that the problem (4.11) is (under
3
F suitable assumptions) equivalent to the initial value problem
E (4.13) s av G 0 <1 <oM;iv0) =x) ,
where
T
G(W) (1) = ¥(1) + [ r(r,0)¥(0)do - r(t,T)v(1) i
0 ;
(4.14) =
+ r(t,0)x + [ v(t-0)d r(t,0) 0<t<e(m) .
0

Chiacile

The Stieltje's integral in (4.14) is well defined if r(t,0) is of bounded variation

with respect to o on 0 <0 < T, uniformly in T on 0 < T < &(T). Under this

assumption it is clear that G defined in (4.14) satisfies the estimate (3.2) with

Y(s) = Ir(s,s)l + sup( var(r(t,0) : 0 < ¢ < 7). Thus one may apply the theory developed
0<T1<®(T)

in Section 2 and arrive at analogues of Theorems 4 and 5 for the nonconvolution equation

(4.9). We shall not persue this this topic further.

Finally, we remark that if X = R and A is a nondecreasing (continuous) function ié
from R to R in (3.1), and if F € AC([0,T]), J. J. Levin [12; Theorem 1') has

obtained by a different method a result similar to the one to which our Theorem 4 reduces

for this case.

——
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